

Abstracts

Power Flow and Energy Storage in Piezoelectric Semiconductor Devices

H. Berger, R.I. Harrison and S.P. Denker. "Power Flow and Energy Storage in Piezoelectric Semiconductor Devices." 1970 Transactions on Microwave Theory and Techniques 18.2 (Feb. 1970 [T-MTT]): 105-111.

Traditionally the phenomenological constitutive relations for piezoelectric materials explicitly relate the electric displacement $D/\text{spl ovbr/}$ the electric intensity $E/\text{spl ovbr/}$, the stress tensor, and the strain tensor. This paper presents a new formulation for the theory of coupled wave interactions in a class of important hexagonal piezoelectric devices; here an equivalent dielectric description explicitly involving only $D/\text{spl ovbr/}$ and $E/\text{spl ovbr/}$ replaces (without approximation) the traditional formulation. The new formulation supplies the foundation for a new determination of power flow and energy storage on a basis broad enough to include the effects of diffusion and collisions on multivelocity multispecies carrier streams. The results, when specialized to a single-velocity single-species carrier stream, differ significantly with others recently proposed for those circumstances. The general results display a considerable degree of compactness and simplicity and are "electrically invariant" in that they hold for insulating, photoconducting, and semiconducting piezoelectric materials without any change in basic form.

[Return to main document.](#)

Click on title for a complete paper.